ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Zongwei Wang, Qi Wang, Xuesen Zhao, Yong Hu, Dangzhong Gao, Jie Meng, Xing Tang, Xiaojun Ma
Fusion Science and Technology | Volume 75 | Number 4 | May 2019 | Pages 308-316
Technical Paper | doi.org/10.1080/15361055.2019.1565855
Articles are hosted by Taylor and Francis Online.
Noncontact radiography is developed to determine the doping concentration of inertial confinement fusion shells based on an improved equivalent absorption method by real-time X-ray imaging. Elements of high atomic number (high-Z)/middle atomic number (mid-Z) are doped into the shells to prevent hot electrons from preheating the fuel and to restrain the growth of hydromechanic instability. In this paper, an improved equivalent absorption model is developed to determine doping concentration by real-time X-ray imaging. Compared to contact radiography (CR) with film imaging, this technique can be used to obtain doping concentrations at different angles as a supplement to the CR method, even if the dynamic range of a charge-coupled device is less than film imaging. Experiments are carried out to determine the doping concentrations of Ge-doped and Si-doped shells. Uncertainties of the results are analyzed, and the expanded uncertainties are approximated to 0.1 at. % (K = 2, confidence factor). The experimental results show that there is a high level of agreement between this method and energy dispersive spectroscopy with the modified model.