ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Moscardini, S. Pupeschi, Y. Gan, F. A. Hernández, M. Kamlah
Fusion Science and Technology | Volume 75 | Number 4 | May 2019 | Pages 283-298
Technical Paper | doi.org/10.1080/15361055.2019.1565481
Articles are hosted by Taylor and Francis Online.
In this work, an in-house thermal–Discrete Element Method (DEM) code, recently developed at Karlsruhe Institute of Technology to evaluate the heat transfer in ceramic packed pebble beds, was applied to study the thermal behavior of the breeder beds of the European solid breeder blanket concept. The breeder zone of the helium-cooled pebble bed (HCPB) blanket for the Demonstration (DEMO) reactor was considered as the reference model implementing the same materials, applying the related neutronic heating, and simulating the relevant bed thicknesses. The code was used to evaluate the temperature profile generated by the neutronic heating in the thickness of the breeder bed. A column cutout of packed pebbles bounded by upper and bottom walls, representing the cooling plates of the HCPB, was considered as a representative geometry to carry out the work. The implemented three-dimensional network model evaluates the heat transfer inside packed beds through chains of thermal resistances describing the thermal contacts (particle-particle and particle-wall) occurring in the assembly. Besides thermal transport through the mechanical contact area, thermal transport through the surrounding gas phase is accounted for including the Smoluchowski effect. Sensitivity studies revealed the influence of the operational conditions and the parameters that mainly affect the temperature profile in the bed.