ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. R. Brown, M. Kaur
Fusion Science and Technology | Volume 75 | Number 4 | May 2019 | Pages 275-282
Technical Paper | doi.org/10.1080/15361055.2019.1579622
Articles are hosted by Taylor and Francis Online.
Magnetothermodynamics is the study of compression and expansion of magnetized plasma with an eye toward identifying equations of state (EOSs) for magneto-inertial fusion experiments. We present recent results from Swarthmore Spheromak Experiment (SSX) experiments on the thermodynamics of compressed magnetized plasmas called Taylor states. In these experiments, we generate twisted flux ropes of magnetized, relaxed plasma accelerated from one end of a 1.5-m-long copper flux conserver and observe their compression in a closed conducting boundary installed at the other end. Plasma parameters are measured during compression. The instances of ion heating during compression are identified by constructing a pressure-volume diagram using measured density, temperature, and volume of the magnetized plasma. While we only measure compression up to 30%, we speculate that if higher compression ratios could be achieved, the compressed Taylor states could form the basis of a new kind of fusion engine. The theoretically predicted magnetohydrodynamic (MHD) and double-adiabatic [Chew-Goldberger-Low (CGL)] EOSs are compared to experimental measurements to estimate the adiabatic nature of the compressed plasma. Since our magnetized plasmas relax to an equilibrium described by MHD, one might expect their thermodynamics to be governed by the corresponding EOS. However, we find that the MHD EOS is not supported by our data. Our results are more consistent with the parallel CGL EOS suggesting that these weakly collisional plasmas have most of their proton energy in the direction parallel to the magnetic field.