ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Weston M. Stacey
Fusion Science and Technology | Volume 75 | Number 4 | May 2019 | Pages 245-250
Technical Paper | doi.org/10.1080/15361055.2018.1506626
Articles are hosted by Taylor and Francis Online.
This paper combines the older neoclassical gyroviscous model for toroidal viscosity in the plasma core, which is based on an axisymmetric magnetic field and obtains reasonable agreement with experiment for toroidal rotation in the plasma core but not in edge plasma, with recent models for neoclassical toroidal viscosity (NTV) based on nonaxisymmetric “perturbation” magnetic field components present primarily in the edge plasma to obtain a composite toroidal viscosity model for toroidal velocity calculations in the tokamak core and edge plasma. This combination is facilitated by the fact that the same form of “drag frequency” representation of the viscous torque used in many of the new (NTV) torque models arising from toroidally nonaxisymmetric perturbation magnetic fields that are present mostly in the plasma edge can also be used to represent the old neoclassical toroidal viscous torques arising from toroidally axisymmetric magnetic fields.