ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Y. Isaev, V. M. Leonov, S. Y. Medvedev
Fusion Science and Technology | Volume 75 | Number 3 | April 2019 | Pages 218-225
Regular Technical Paper | doi.org/10.1080/15361055.2018.1562315
Articles are hosted by Taylor and Francis Online.
Properties of toroidal Alfvén eigenmodes (TAEs), driven by neutral beam injection (NBI) hot ions, are described for the tokamak T-15 under construction in the Kurchatov Institute to test a possible influence on the beam and plasma particle losses. The T-15 baseline scenario with a 10-s flat-top 2 MA current stage, 6-MW NBI plus 6 MW of electron cyclotron resonance (ECR) heating is computed with the ASTRA code. The spatial structure and the frequencies of different TAE modes with the toroidal indexes n = 2 to 8 have been obtained with the ideal magnetohydrodynamic KINX code. The bulk plasma Landau damping, linear growth rates, and nonlinear evolution of the TAE mode amplitudes driven by the NBI ions have been computed with the VENUS code. Our numerical estimations for the T-15 TAE modes are compared with experimental and theoretical results for the DIII-D and NSTX tokamaks.