ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Leif Holmlid
Fusion Science and Technology | Volume 75 | Number 3 | April 2019 | Pages 208-217
Technical Paper | doi.org/10.1080/15361055.2018.1546090
Articles are hosted by Taylor and Francis Online.
Fusion power generators employing muon-catalyzed nuclear fusion can be developed using a new type of laser-driven muon generator. Results using this generator have been published, and those data are now used to derive the possible fusion power using this generator. Muon-catalyzed fusion has been studied for 60 years, and the results found in such studies are used here to determine the possible power output. Since the muon source gives complex mixtures of mesons and leptons, which have very different interactions with the measuring equipment, the number of negative muons formed is not easily found exactly, but reasonable values based on numerous published experiments with different methods are used to predict the energy output. With deuterium-tritium as fuel, a fusion power generator employing the novel muon generator could give more than 1 MW thermal power. The thermal power using pure deuterium as fuel may be up to 220 kW initially: It will increase with time up to over 1 MW due to the production of tritium in one reaction branch. The power required for running a modern laser and the muon generator is estimated to be of the order of 100 W, thus giving a total energy gain of more than 10 000. The harmful radiation from such fusion power generators is mainly in the form of neutrons from the fusion reactions. Thus, thick radiation shields are necessary as for almost all other fusion concepts. This means that medium-scale thermal fusion power generators of the muon-catalyzed fusion type may become available within a relatively short time.