ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
P. T. Lang, T. Nakano, L. Garzotti, B. Pégourié, B. Ploeckl, S. Sakurai
Fusion Science and Technology | Volume 75 | Number 3 | April 2019 | Pages 178-196
Technical Paper | doi.org/10.1080/15361055.2018.1471960
Articles are hosted by Taylor and Francis Online.
The research plan of the JT-60SA, a superconducting tokamak device currently under construction, requests a powerful pellet injection system for its particle fueling and edge-localized-mode (ELM) pacing experiments. These investigations, foreseen to answer basic questions with respect to the operation of ITER and a future fusion power plant like DEMO, need pellets with flexible parameters delivered precisely and reliably for control purposes. Here, we present a conceptual design of this system based on classical pellet technology. Analysis showed pellets will show the best performance for fueling and most likely also for ELM pacing when injected from the torus inboard side, despite the limited maximum pellet speed caused by this approach. This is due to constructional constraints rising from the fact the JT-60SA vacuum vessel is already under construction, enforcing inboard injection via a multibend guiding-tube system and limiting the maximum pellet speed to about 470 m/s. To match this boundary condition and fulfill the need for precise control, a centrifuge accelerator has been chosen. Based on the stop cylinder principle and equipped with a double accelerator arm, it can host up to six steady-state ice extruders working simultaneously for pellet production. This way, all system requirements expressed in the research plan can be well covered, providing even some headroom for better flexibility during the planned investigations. Details of our design and the reasoning for the layout chosen are provided in this paper.