ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
K. S. Han, B. H. Park, A. Y. Aydemir, J. Seol
Fusion Science and Technology | Volume 75 | Number 2 | February 2019 | Pages 137-147
Technical Paper | doi.org/10.1080/15361055.2018.1554391
Articles are hosted by Taylor and Francis Online.
The Deal Two Equilibrium (DTEQ) code solves the Grad-Shafranov (GS) equation for magnetohydrodynamics equilibrium in the axisymmetric toroidal geometry using the deal.II finite element library. In this paper, we introduce DTEQ that can solve the GS equation both linearly and nonlinearly. The linear solution obtained from this code is verified by comparing with a known analytic solution of the linear GS equation. For the nonlinear solution, DTEQ requires two input profiles, p(ψ) and F(ψ), to be specified as a function of the normalized minor radius ρ. The pressure profile p(ψ) is specified based on Thomson scattering, charge exchange spectroscopy data, and an energetic particle pressure model. The toroidal field profile F(ψ) is obtained from our model that makes the diamagnetic current play a significant role when the poloidal beta βp is greater than one. With these two input profiles, the nonlinear GS equation can be solved using Picard iteration within the plasma boundary from EFIT. Using this newly developed code, we obtain several meaningful results that show its validity. The calculated poloidal current density is very large in the transport barrier due to the diamagnetic current, and the characteristics of the Pfirsch-Schlüter current appear in the toroidal current density. In addition, the results obtained from this code agree well with those from EFIT, and the calculated safety factor values in the center are well correlated with the sawtooth activity in the discharge.