ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
K. S. Han, B. H. Park, A. Y. Aydemir, J. Seol
Fusion Science and Technology | Volume 75 | Number 2 | February 2019 | Pages 137-147
Technical Paper | doi.org/10.1080/15361055.2018.1554391
Articles are hosted by Taylor and Francis Online.
The Deal Two Equilibrium (DTEQ) code solves the Grad-Shafranov (GS) equation for magnetohydrodynamics equilibrium in the axisymmetric toroidal geometry using the deal.II finite element library. In this paper, we introduce DTEQ that can solve the GS equation both linearly and nonlinearly. The linear solution obtained from this code is verified by comparing with a known analytic solution of the linear GS equation. For the nonlinear solution, DTEQ requires two input profiles, p(ψ) and F(ψ), to be specified as a function of the normalized minor radius ρ. The pressure profile p(ψ) is specified based on Thomson scattering, charge exchange spectroscopy data, and an energetic particle pressure model. The toroidal field profile F(ψ) is obtained from our model that makes the diamagnetic current play a significant role when the poloidal beta βp is greater than one. With these two input profiles, the nonlinear GS equation can be solved using Picard iteration within the plasma boundary from EFIT. Using this newly developed code, we obtain several meaningful results that show its validity. The calculated poloidal current density is very large in the transport barrier due to the diamagnetic current, and the characteristics of the Pfirsch-Schlüter current appear in the toroidal current density. In addition, the results obtained from this code agree well with those from EFIT, and the calculated safety factor values in the center are well correlated with the sawtooth activity in the discharge.