ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Yuxin Chai, Xingui Zhou, Huayu Zhang, Yumin Zhang
Fusion Science and Technology | Volume 75 | Number 2 | February 2019 | Pages 112-119
Technical Paper | doi.org/10.1080/15361055.2018.1533620
Articles are hosted by Taylor and Francis Online.
Silicon carbide (SiC) fiber–reinforced SiC matrix (SiCf/SiC) composites, employing two SiC fibers, KD-I and KD-II, respectively, were fabricated by the precursor infiltration and pyrolysis process. A pyrocarbon coating was used as the fiber-matrix interface. In addition, the effects of heat treatment on the properties of the SiC fibers and SiCf/SiC composites were investigated. Results revealed marginal performance degradation of the KD-I and KD-II SiC fibers after heat treatment at 1100°C for 1 h. However, heat treatment at 1400°C for 1 h led to the decrease in the single-filament tensile strength of the KD-I and KD-II SiC fibers by 50.2% and 10.1%, respectively. In addition, the flexural strength of the SiCf/SiC composites, which were fabricated using the KD-I and KD-II SiC fibers, decreased by 49.6% and 15.9%, respectively. The difference in the composition of the KD-I and KD-II SiC fibers demonstrated that the SiC fibers and SiCf/SiC composites decreased by varying degrees.