ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Wenxing Xia, Li Yang, Kun Zhang, Pingni He, Lei Shu, Lei Han, Xiaochun Ma, Zhiyan Zhang, Zhi Cao, F. Gou
Fusion Science and Technology | Volume 75 | Number 2 | February 2019 | Pages 104-111
Technical Paper | doi.org/10.1080/15361055.2018.1533618
Articles are hosted by Taylor and Francis Online.
The corrosion behaviors of 316L stainless steel welds in stagnant liquid lithium and lithium with 0.2%H at 325°C for 1000 h was investigated by using weight loss method, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction, and laser-induced breakdown spectroscopy. After liquid Li corrosion, a large number of (M)23C6 and NiCx particles (sizes of 1 ~ 2 μm) were found on the weld surface, while almost no such particles were found on the weld surface after corrosion in liquid Li with 0.2%H. The corrosion rates of welds were about 4.10 × 10−3 and 6.65 × 10−3 g · m−2 · h−1 in liquid Li and Li with 0.2%H, respectively, while the penetration depth of Li increased by 1.375 times after adding 0.2%H to Li. It was found that the penetration depth of Li was basically consistent with the dissolution depth of Cr, and the dissolution depth of Cr was larger than that of Ni and Fe in liquid Li and Li with 0.2%H.