ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. E. Gebhart, D. Shiraki, J. Baldzuhn, L. R. Baylor, S. J. Meitner
Fusion Science and Technology | Volume 75 | Number 2 | February 2019 | Pages 89-97
Technical Paper | doi.org/10.1080/15361055.2018.1541399
Articles are hosted by Taylor and Francis Online.
Future long-pulse magnetic confinement fusion reactors will require density and isotopic mixture control using steady-state repeating pellet injectors. For high-energy density burning plasmas, pellet velocities of 1 km/s and above will be required for sufficient plasma penetration to achieve high fueling efficiency. Currently, steady-state repeating injection systems utilize cryogenic extruder systems to produce an extrusion of solid deuterium or deuterium-tritium. In repeating light gas gun injectors, the solid extrusion is cut and simultaneously loaded into a barrel. Once loaded, a fast operating gas valve delivers a high pressure burst of gas to accelerate the pellet down the barrel and into the machine. This process takes ~10 ms to achieve. Adequate gas pumping of the extruder exhaust and injection line propellant gas collection chambers is necessary for optimal operation of the pellet fueling system. Excess solid from the extruder sublimates in an exhaust chamber. The gas pressure in the extruder exhaust chamber must remain low to maintain low heating loads on the cooling mechanism (cryorefrigerators or liquid helium flow) and to reduce thermal conduction to the extrusion. Pumping the injection line chambers is necessary to limit propellant gas flow into the machine. A numerical simulation code was created to predict temporal pumping performance for these repeating pellet injection systems. This paper outlines the methods and assumptions used to create this model and compares results to the pellet injection system currently employed on DIII-D, the steady-state pellet injection system planned for the Wendelstein 7-X, and a brief analysis of the ITER conceptual pellet fueling system.