ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
A. K. Knight, F.-Y. Tsai, M. J. Bonino, D. R. Harding
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 187-196
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A448
Articles are hosted by Taylor and Francis Online.
Vapor-deposited polyimide thin films and shells have been developed for use in direct-drive-implosion experiments. The properties of these materials have been previously measured for different processing conditions, which have also been correlated with the material's microstructure. This paper addresses how the different material properties affect the subsequent stage of converting an empty capsule into a cryogenic fusion target containing solid hydrogen-isotope fuel. The advantages and limitations of these properties are defined in terms of (1) the time it takes to permeation-fill and cryogenically cool fusion targets, and (2) how the processing conditions used to realize these properties affect the capsules' specifications and the subsequent implosion. A paraxmetric comparison is presented.A common limitation of all the processing conditions is that the roughness of the polyimide capsules is greater than is desirable. Efforts to improve the smoothness of the asdeposited polyamic acid shells (the precursor to polyimide) involve a combined theoretical and experimental approach. The internal components of the vacuum deposition chamber are theoretically modeled using two simulation codes to cover the pressure regime of interest: a Monte Carlo approach is used for the lowest pressure regime (<10-5 Torr) while a continuum fluid dynamics code (FLUENT) is used to calculate the higher pressure regime (>10-3 Torr). The experimentally measured evaporation mass flux of the monomers resulted in a calculated pressure that corresponded to the measured actual value. The resulting mass-flux distribution to, and around, a capsule quantified the uniformity of the deposition process. The mass flux uniformity varied by 50% over the surface of a capsule and varied by 80% over the surface of the bounced pan.