ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Huaichu Dai, Damao Yao, Gang Lv, Qisheng Xu, Lei Xiu, Feixiang Jin
Fusion Science and Technology | Volume 75 | Number 1 | January 2019 | Pages 59-66
Technical Paper | doi.org/10.1080/15361055.2018.1499395
Articles are hosted by Taylor and Francis Online.
As one of the key components in tokamak fusion reactor, the divertor is often exposed to tritium environment, high heat flux, and neutron radiation which are harmful for human beings and the divertor itself, which is damaged easily. So maintenance for the divertor is necessary. However, due to neutron damage and activation, maintenance for the divertor should be done in a remote way rather than by personnel directly, especially the process for installing the divertor into the inner and outer rails in the vacuum vessel from the outside. As an important compatible structure for the divertor remote handling (RH) process, inner and outer supports should be considered for ensuring the RH process goes well. Thus this paper introduces the China Fusion Engineering Test Reactor divertor support design mechanism, including inner support and outer support, which are based on the requirements of RH. Then the electromagnetic forces generated by Halo current and Eddy current due to plasma disruption are analyzed in order to validate the design of the newly designed support mechanism.