ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
What’s the most difficult question you’ve been asked as a maintenance instructor?
Blye Widmar
"Where are the prints?!"
This was the final question in an onslaught of verbal feedback, comments, and critiques I received from my students back in 2019. I had two years of instructor experience and was teaching a class that had been meticulously rehearsed in preparation for an accreditation visit. I knew the training material well and transferred that knowledge effectively enough for all the students to pass the class. As we wrapped up, I asked the students how they felt about my first big system-level class, and they did not hold back.
“Why was the exam from memory when we don’t work from memory in the plant?” “Why didn’t we refer to the vendor documents?” “Why didn’t we practice more on the mock-up?” And so on.
Yoshitaka Mori, Yasuhiko Nishimura, Katsuhiro Ishii, Ryohei Hanayama, Yoneyoshi Kitagawa, Takashi Sekine, Yasuki Takeuchi, Nakahiro Satoh, Takashi Kurita, Yoshinori Kato, Norio Kurita, Toshiyuki Kawashima, Osamu Komeda, Tatsumi Hioki, Tomoyoshi Motohiro, Atsushi Sunahara, Yasuhiko Sentoku, Eisuke Miura, Akifumi Iwamoto, Hitoshi Sakagami
Fusion Science and Technology | Volume 75 | Number 1 | January 2019 | Pages 36-48
Technical Paper | doi.org/10.1080/15361055.2018.1499393
Articles are hosted by Taylor and Francis Online.
The injection and engagement of pellets using laser beam irradiation is one of the key technologies to realize a laser-driven inertial fusion energy (IFE) reactor. We irradiated ultra-intense laser (11 TW: 0.6 J/110 fs 2 beams with a focal intensity of 510 W/cm) in counter configuration on flying 1-mm-diameter deuterated polystyrene beads beyond 600 pellets on an average at 1 Hz and 10 min per cycle for 4 years. An injection system delivers pellets with free-fall that consists of a header for pellet delivery by disk rotation and a detection unit for synchronizing the motion of a pellet for laser engagement in time. During laser irradiation, the free-falling pellet placement was at Δx = 1 mm, Δy = 0.4 mm on a plane perpendicular to the falling direction, and Δz = 0.1 mm in the falling direction at the moment of laser irradiation. Using a two-directional probe shadowgraph system, we succeeded in aligning the pellet-falling position with a laser engagement probability greater than 70%; the probability improved from the previous experiments wherein the probabilities were less than 20%. As a result, the shot probability is 27% for gamma-ray generation resulting from ultra-intense laser-matter interactions and 22% for detection of signals corresponding to fusion neutrons with a maximum yield of 4 10 n/shot. The neutron reaction induced from an integrated system of pellet injector and laser is a decisive step in the research and development of an IFE reactor.