ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Yoshitaka Mori, Yasuhiko Nishimura, Katsuhiro Ishii, Ryohei Hanayama, Yoneyoshi Kitagawa, Takashi Sekine, Yasuki Takeuchi, Nakahiro Satoh, Takashi Kurita, Yoshinori Kato, Norio Kurita, Toshiyuki Kawashima, Osamu Komeda, Tatsumi Hioki, Tomoyoshi Motohiro, Atsushi Sunahara, Yasuhiko Sentoku, Eisuke Miura, Akifumi Iwamoto, Hitoshi Sakagami
Fusion Science and Technology | Volume 75 | Number 1 | January 2019 | Pages 36-48
Technical Paper | doi.org/10.1080/15361055.2018.1499393
Articles are hosted by Taylor and Francis Online.
The injection and engagement of pellets using laser beam irradiation is one of the key technologies to realize a laser-driven inertial fusion energy (IFE) reactor. We irradiated ultra-intense laser (11 TW: 0.6 J/110 fs 2 beams with a focal intensity of 510 W/cm) in counter configuration on flying 1-mm-diameter deuterated polystyrene beads beyond 600 pellets on an average at 1 Hz and 10 min per cycle for 4 years. An injection system delivers pellets with free-fall that consists of a header for pellet delivery by disk rotation and a detection unit for synchronizing the motion of a pellet for laser engagement in time. During laser irradiation, the free-falling pellet placement was at Δx = 1 mm, Δy = 0.4 mm on a plane perpendicular to the falling direction, and Δz = 0.1 mm in the falling direction at the moment of laser irradiation. Using a two-directional probe shadowgraph system, we succeeded in aligning the pellet-falling position with a laser engagement probability greater than 70%; the probability improved from the previous experiments wherein the probabilities were less than 20%. As a result, the shot probability is 27% for gamma-ray generation resulting from ultra-intense laser-matter interactions and 22% for detection of signals corresponding to fusion neutrons with a maximum yield of 4 10 n/shot. The neutron reaction induced from an integrated system of pellet injector and laser is a decisive step in the research and development of an IFE reactor.