ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
V. A. Soukhanovskii, W. R. Blanchard, J. K. Dong, R. Kaita, H. W. Kugel, J. E. Menard, T. J. Provost, R. Raman, A. L. Roquemore, P. Sichta
Fusion Science and Technology | Volume 75 | Number 1 | January 2019 | Pages 1-17
Technical Paper | doi.org/10.1080/15361055.2018.1502034
Articles are hosted by Taylor and Francis Online.
A supersonic gas injector (SGI) has been developed for fueling and diagnostic applications on the National Spherical Torus Experiment (NSTX). It is comprised of a graphite converging-diverging Laval nozzle and a commercial piezoelectric gas valve mounted on a movable probe at a low-field-side midplane port location. Also mounted on the probe is a diagnostic package: a Langmuir probe, two thermocouples, and five pick-up coils for measuring toroidal, radial, vertical magnetic field components and magnetic fluctuations at the location of the SGI tip. The SGI flow rate is up to 33.25 Pa m3/ (1.75 × 1022 euterium particles/s), comparable to conventional NSTX gas injectors. The nozzle operates in a pulsed regime at room temperature and a reservoir gas pressure up to 665 kPa (5000 Torr). The deuterium jet Mach number of about 4 and the divergence half-angle of 5 to 25 deg have been measured in laboratory experiments simulating the NSTX environment. Reliable operation of the SGI and all mounted diagnostics at distances 0.01 to 0.20 m from the plasma separatrix has been demonstrated in NSTX experiments. The SGI has been used for fueling of ohmic and 2- to 4-MW neutral beam injection–heated L- and H-mode plasmas. Fueling efficiency in the range 0.1 to 0.3 has been obtained from the plasma electron inventory analysis. The SGI-fueling–based plasma discharge scenarios enabling better density control have been developed.