ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Aljaž Čufar, Paola Batistoni, Sean Conroy, Zamir Ghani, Igor Lengar, Sergey Popovichev, Brian Syme, Žiga Štancar, Luka Snoj, JET Contributors
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 370-386
Technical Paper | doi.org/10.1080/15361055.2018.1475163
Articles are hosted by Taylor and Francis Online.
The fusion power output of fusion plasmas is measured using the neutron yield detectors due to its linear relation to the fusion yield. Absolutely calibrated neutron yield detectors are thus a crucial part of the plasma diagnostics system and the absolute accuracy of their calibration must be ensured.
The transition of the Joint European Torus’s (JET’s) first wall material from carbon (C) wall to ITER-like (Be/W/C) first wall was a significant change in the structure of the machine and recalibration of the main neutron yield detectors was needed to maintain the required measurement uncertainty of less than ±10%. The neutron yield detectors were thus recalibrated through two in situ calibrations to deuterium-deuterium neutrons in 2013 and deuterium-tritium neutrons in 2017 using 252Cf spontaneous fission source and a compact neutron generator, respectively.
We describe the extensive neutronics calculations performed in support of these latest calibration experiments. These analyses were performed using Monte Carlo simulations to better understand the calibration procedure, optimize the experiments, ensure personnel safety, and quantify the effects of the uncharacteristic circumstances during calibration experiments. This paper focuses on assessments of the effects of the uncharacteristic circumstances, e.g., the presence of the remote handling system in the machine due to its use in neutron source delivery, difference in the neutron emission spectrum, and differences in the neutron source shape. Lessons learned, findings, and relevance for calibrations of future large tokamaks are discussed.