ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
L. A. El-Guebaly, ARIES Team, and FNSF Team
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 340-369
Technical Paper | doi.org/10.1080/15361055.2018.1494946
Articles are hosted by Taylor and Francis Online.
In recent decades, fusion energy for electricity has become an international issue with worldwide interest in several magnetic fusion concepts offering the most promising energy source for this century. From existing experiments to power plants, several next-step facilities (NSFs) must be built to bridge the large gaps in fusion science and nuclear technology. During the course of fusion studies, all power plants and NSFs require an integral nuclear assessment to identify the nuclear parameters and address key issues related to tritium breeding ratio (TBR), blanket design, selection of low-activation materials, radial/vertical build optimization and definition, magnet protection, shielding, activation, and survivability of structural materials in 14-MeV neutron environment. This paper presents our design philosophy, nuclear assessment approach, and recent research results for ARIES conceptual tokamak, spherical tokamak, and stellarator power plants as well as NSFs. Some features of the nuclear activities [such as tritium breeding requirement (overall TBR = 1.05), blanket concept, and radwaste issues] remained fixed between the various designs, while others [such as service lifetime (20 to 200 displacements per atom) and shielding requirements] were subject to change to meet the specific design needs. Emerging challenges and lessons learned from nuclear assessments performed during recent decades are highlighted throughout the paper. In particular, the cost implication of uncertainties in the TBR prediction and the large amount of low-level waste generation are important challenges facing the fusion community and should be addressed by interdisciplinary research programs.