ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Bethany R. Colling, T. Eade, M. R. Gilbert, J. Naish, S. Zheng
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 330-339
Technical Paper | doi.org/10.1080/15361055.2018.1496690
Articles are hosted by Taylor and Francis Online.
Computational models created for neutronics assessment through solid geometry conversion are often specific to the analysis being performed. The use of unstructured mesh geometry has the potential to reduce the build time of MCNP models, reduce inaccuracies introduced through flux averaging over different components and material mixing, and make use of computer-aided design models that can also be suitable for other types of analysis. In this paper three neutronics methods were investigated for suitability in performing a radioactive waste assessment of a fusion demonstration reactor. The methods included the conventional cell-based approach, a superimposed structured mesh, and the use of a recently developed capability with unstructured mesh geometry. It was concluded that an unstructured mesh approach has the potential to be an important tool for assessing radioactive waste to inform reactor and component design.