ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Yican Wu
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 321-329
Technical Paper | doi.org/10.1080/15361055.2018.1475162
Articles are hosted by Taylor and Francis Online.
Advanced nuclear systems, such as fusion systems, generally have features of large size, complex structures, spatially heterogeneous distribution of components and materials, and high energy and high flux, as well as a wide and complex energy spectrum of neutrons. Compared with traditional nuclear systems, these features have brought unprecedented challenges to neutronics design and analysis. To confront these challenges, the FDS Team has made significant progress in the development of neutronics methods and the comprehensive simulation code Super Multi-functional Calculation Program for Nuclear Design and Safety Evaluation (SuperMC). Furthermore, the FDS Team has been developing the High Intensity D-T Fusion Neutron Generator (HINEG) and has performed a series of neutronics experiments. Based on the developed methods, codes, and facility, a series of fusion designs and analyses has been carried out, including the design of FDS series reactors as well as the ITER neutronics analysis.