ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Is waste really waste?
Tim Tinsley
I’ve been reflecting on the recent American Nuclear Society Winter Conference and Expo, where I enjoyed the discussion on recycling used nuclear fuel to recover valuable minerals or products for future applications. I have spent more than 30 years focusing on dissolving and separating nuclear material, so it was refreshing to hear the case for new applications being made. However, I feel that these discussions could go further still.
Radiation is energy, something that our society seems to have an endless need for. A nuclear power station produces a lot of radiation that is mostly discarded. But once fuel has been used, it still produces significant levels of radiation and heat energy. The associated storage, processing, and eventual disposal of this used fuel requires careful management and investment to protect systems and people from the radiation. Should we really disregard—and discard—this energy source, along with all the valuable minerals in the used fuel, when we could instead use it to deliver significant value to society?
Yican Wu
Fusion Science and Technology | Volume 74 | Number 4 | November 2018 | Pages 321-329
Technical Paper | doi.org/10.1080/15361055.2018.1475162
Articles are hosted by Taylor and Francis Online.
Advanced nuclear systems, such as fusion systems, generally have features of large size, complex structures, spatially heterogeneous distribution of components and materials, and high energy and high flux, as well as a wide and complex energy spectrum of neutrons. Compared with traditional nuclear systems, these features have brought unprecedented challenges to neutronics design and analysis. To confront these challenges, the FDS Team has made significant progress in the development of neutronics methods and the comprehensive simulation code Super Multi-functional Calculation Program for Nuclear Design and Safety Evaluation (SuperMC). Furthermore, the FDS Team has been developing the High Intensity D-T Fusion Neutron Generator (HINEG) and has performed a series of neutronics experiments. Based on the developed methods, codes, and facility, a series of fusion designs and analyses has been carried out, including the design of FDS series reactors as well as the ITER neutronics analysis.