ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
M. Theobald, B. Dumay, C. Chicanne, J. Barnouin, O. Legaie, P. Baclet
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 176-179
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A446
Articles are hosted by Taylor and Francis Online.
For the "Mégajoule" Laser (LMJ) facility of the CEA, amorphous hydrogenated carbon (a-C:H) is the nominal ablator to be used for inertial confinement fusion (ICF) experiments. These capsules contain the fusible deuterium-tritium mixture to achieve ignition. Coatings are prepared by glow discharge polymerization (GDP) with trans-2-butene and hydrogen. The films properties have been investigated. Laser fusion targets must have optimized characteristics: a diameter of about 2.4 mm for LMJ targets, a thickness up to 175 m, a sphericity and a thickness concentricity better than 99% and an outer and an inner roughness lower than 20 nm at high modes. The surface finish of these laser fusion targets must be extremely smooth to minimize hydrodynamic instabilities.Movchan and Demchishin, and later Thornton introduced a structure zone model (SZM) based on both evaporated and sputtered metals. They investigated the influence of base temperature and the sputtering gas pressure on structure and properties of thick polycrystalline coatings of nickel, titanium, tungsten, aluminum oxide. An original cross-sectional analysis by atomic force microscopy (AFM) allows amorphous materials characterization and permits to make an analogy between the amorphous GDP material and the existing model (SZM). The purpose of this work is to understand the relationship between the deposition parameters, the growing structures and the surface roughness.The coating structure as a function of deposition parameters was first studied on plane silicon substrates and then optimized on PAMS shells. By adjusting the coating parameters, the structures are modified, and in some case, the high modes roughness decreases dramatically.