ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
E. Anselmi, J. Raby, A. Balland-Longeau
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 157-164
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A443
Articles are hosted by Taylor and Francis Online.
Inertial Confinement Fusion experiments are conducted in polymer capsule in which nuclear products are located. In order to vary optical properties, we need to develop polyimides with high mechanical properties in which we have to substitute all the hydrogen atoms by deuterium atoms. The best way to obtain deuterated polymer is to deuterate monomers instead of direct deuteration of polymers. In a first part, mechanical properties of aromatic polyimide films based on two dianhydrides (pyromellitic dianhydride PMDA and 3,3',4,4'-biphenyltetracarboxylic dianhydride BPDA) and two diamines (4,4'-oxydianiline ODA and pphenylenediamine PDA) have been described. The optimization of synthesis and fabrication parameters of polyimide films PMDA/ODA and BPDA/PDA having high inherent viscosity, so high molecular weight, have allowed us to obtain high mechanical properties. And in a second part, deuterated monomers have been synthesized via multi-steps organic reactions and/or under pressure conditions. We have investigated the preparation of deuterated poly(amic-acid) solutions in NMP and the preparation of the corresponding polyimides deuterated membranes. Results show that deuterium does not affect the reactivity of monomers to form the poly(amic-acid) solution.