ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Robert C. Cook, Mitchell Anthamatten, Stephan A. Letts, Abbas Nikroo, Donald G. Czechowicz
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 148-156
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A442
Articles are hosted by Taylor and Francis Online.
One approach to improving the quality of the DT ice layer on the inside of a NIF capsule target is to enhance the natural -layering process by heating the ice with infrared light (IR) tuned to a D2 or DT excitation band. However to do this the IR must pass through the capsule wall, and absorption by the capsule material results in heat generation that is deleterious both in terms of reducing the energy input to the ice as well as increasing the difficulty of symmetrically cooling the capsule. In order to optimize the choice of wavelength we have measured the wavelength dependent transmission properties of IR through the plastic materials we are considering for capsule fabrication. We will present wavelength dependent extinction coefficient data for normal and fully deuterated plasma polymer and vapor deposited polyimide.