ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Qiang-Hua Lei, De-Li Luo, Huan Wang, Yi-Fu Xiong, Guang-Hui Zhang, Wen-Qing Wu
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 252-262
Technical Note | doi.org/10.1080/15361055.2018.1464815
Articles are hosted by Taylor and Francis Online.
For hydrogen isotope enrichment/separation applicable to fusion fuel processing, environmental tritium safety confinement, or recovery of tritium from heavy water reactors, a hydrogen displacement adsorption process system is recommended using molecular sieve 5A as the separation material. For simulation and optimization of the process, mathematical models and a solving method are provided to calculate the breakthrough curves during the displacement adsorption, in which various parameters including pressure drop and mass transfer coefficients are allowed to be changeable. Based on the calculated results, the effects of the column size, the flow rate, and the outlet pressure on the enrichment factor, the recovery ratio and the separation ability of the column are comprehensively analyzed. The conclusions have some theoretical guiding significance for the development of hydrogen isotope separation by the displacement adsorption method.