ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
Zhilin Chen, Masao Matsuyama, Shuming Peng, Yang Yang, Yu Li, Shenghan Cheng
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 246-251
Technical Note | doi.org/10.1080/15361055.2018.1462086
Articles are hosted by Taylor and Francis Online.
Tritium release behavior in a tungsten sample after exposing to tritium ions with energy about 200 eV created by glow discharge has been studied by both β-ray–induced X-ray spectrometry (BIXS) and imaging plate (IP). The tungsten sample was heated stepwise in a vacuum vessel at temperatures from 400 to 1000 K in experiments, and results obtained from both BIXS and IP measurements showed that the amount of tritium absorbed on the sample surface decreased more than 97% after heating at 800 K. Both intensity and shape of the measured X-ray spectrum have been specified to estimate the change of the tritium depth profile after each heat treatment. Besides, the Monte Carlo Stopping and Range of Ions in Matter (SRIM) code has been introduced to calculate the initial tritium depth profile just after being irradiated by glow discharge. Analysis shows that tritium atoms locate around 3 nm in depth before annealing, and tritium distribution becomes uniform in the near-surface layers (around several nanometers) gradually after heat treatment. At about 800 K, the relative tritium concentration in the near-surface layers reaches its maximum value compared with tritium in the deeper part of the tungsten sample. Then more and more tritium diffuses deeper into the sample as the temperature increases.