ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Zhilin Chen, Masao Matsuyama, Shuming Peng, Yang Yang, Yu Li, Shenghan Cheng
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 246-251
Technical Note | doi.org/10.1080/15361055.2018.1462086
Articles are hosted by Taylor and Francis Online.
Tritium release behavior in a tungsten sample after exposing to tritium ions with energy about 200 eV created by glow discharge has been studied by both β-ray–induced X-ray spectrometry (BIXS) and imaging plate (IP). The tungsten sample was heated stepwise in a vacuum vessel at temperatures from 400 to 1000 K in experiments, and results obtained from both BIXS and IP measurements showed that the amount of tritium absorbed on the sample surface decreased more than 97% after heating at 800 K. Both intensity and shape of the measured X-ray spectrum have been specified to estimate the change of the tritium depth profile after each heat treatment. Besides, the Monte Carlo Stopping and Range of Ions in Matter (SRIM) code has been introduced to calculate the initial tritium depth profile just after being irradiated by glow discharge. Analysis shows that tritium atoms locate around 3 nm in depth before annealing, and tritium distribution becomes uniform in the near-surface layers (around several nanometers) gradually after heat treatment. At about 800 K, the relative tritium concentration in the near-surface layers reaches its maximum value compared with tritium in the deeper part of the tungsten sample. Then more and more tritium diffuses deeper into the sample as the temperature increases.