ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
I. Voitsekhovitch, R. Hatzky, D. Coster, F. Imbeaux, D. C. McDonald, T. B. Fehér, K. S. Kang, H. Leggate, M. Martone, S. Mochalskyy, X. Sáez, T. Ribeiro, T.-M. Tran, A. Gutierrez-Milla, T. Aniel, D. Figat, L. Fleury, O. Hoenen, J. Hollocombe, D. Kaljun, G. Manduchi, M. Owsiak, V. Pais, B. Palak, M. Plociennik, J. Signoret, C. Vouland, D. Yadykin, F. Robin, F. Iannone, G. Bracco, J. David, A. Maslennikov, J. Noé, E. Rossi, R. Kamendje, S. Heuraux, M. Hölzl, S. D. Pinches, F. Da Silva, D. Tskhakaya
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 186-197
Technical Paper | doi.org/10.1080/15361055.2018.1424483
Articles are hosted by Taylor and Francis Online.
Integrated modeling (IM) of present experiments and future tokamak reactors requires the provision of computational resources and numerical tools capable of simulating multiscale spatial phenomena as well as fast transient events and relatively slow plasma evolution within a reasonably short computational time. Recent progress in the implementation of the new computational resources for fusion applications in Europe based on modern supercomputer technologies (supercomputer MARCONI-FUSION), in the optimization and speedup of the EU fusion-related first-principle codes, and in the development of a basis for physics codes/modules integration into a centrally maintained suite of IM tools achieved within the EUROfusion Consortium is presented. Physics phenomena that can now be reasonably modelled in various areas (core turbulence and magnetic reconnection, edge and scrape-off layer physics, radio-frequency heating and current drive, magnetohydrodynamic model, reflectometry simulations) following successful code optimizations and parallelization are briefly described. Development activities in support to IM are summarized. They include support to (1) the local deployment of the IM infrastructure and access to experimental data at various host sites, (2) the management of releases for sophisticated IM workflows involving a large number of components, and (3) the performance optimization of complex IM workflows.