ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Jin-Li Cao, Wei Xiao, Qi Cao, Bing-Ling He
Fusion Science and Technology | Volume 74 | Number 3 | October 2018 | Pages 177-185
Technical Paper | doi.org/10.1080/15361055.2017.1416245
Articles are hosted by Taylor and Francis Online.
Experiments observed preferential He bubble formation in carbide precipitates M23C6 during low-temperature He irradiation in ferritic-martensitic steels. However, the process and mechanism of He trapping in M23C6 present a challenge to measure. Using density functional theory, we have systematically investigated He distribution, migration, and accumulation in Cr23C6. The formation energies of interstitial and substitutional He in Cr23C6 are 3.50 and 3.16 eV, respectively, remarkably lower than those in Fe matrix. The higher solubility of He in Cr23C6 makes it an He-trapping center in martensitic steels. On the other hand, the migration barrier of interstitial He in Cr23C6 is 2.58 eV, about 2.52 eV higher than that in bulk Fe. Furthermore, we only find a very weak attraction potency for substitutional-interstitial He pair, 0.25 eV, and even no binding trend for interstitial-interstitial or substitutional-substitutional He pairs, which suggests that it is more difficult for He atoms to move and less powerful driving force to accumulate in Cr23C6 than those in Fe matrix. Our results indicate that the trapping effect results from a lower charge density zone in Cr23C6, and predict that the small and dense Cr23C6 particles may hinder bubble growth at the initial stage, which can improve the resistance to irradiation void swelling.