ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
A. Nikroo, E. Castillo, D. Hill, A. L. Greenwood
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 144-147
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A441
Articles are hosted by Taylor and Francis Online.
Copper doped polymer shells can provide a very useful diagnostic for fast ignition experiments currently being performed at various laboratories around the world. The low concentration copper dopant acts as an efficient x-ray source providing information on the physics of fast ignition. We have developed copper doped glow discharge (GDP) coatings suitable for such purposes. Copper acetylacetonate (CuAcAC), a solid at room temperature, was used in a heated jacket as the dopant source. We used this technique to fabricate thin (~5-7 m) GDP shells doped with ~1 at % copper through the depolymerizable mandrel process for fast ignition experiments. The details of the experimental set up and the range and limitations of the technique are discussed.