ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
L. M. Reusch, P. Franz, D. J. Den Hartog, J. A. Goetz, M. D. Nornberg, P. VanMeter
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 167-176
Technical Note | doi.org/10.1080/15361055.2017.1404340
Articles are hosted by Taylor and Francis Online.
Soft–X-ray (SXR) brightness measurements contain information on a number of physics parameters in fusion plasmas; however, it is nearly impossible to extract the information without modeling. A validated forward model is therefore necessary for the accurate interpretation of SXR measurements and will be critical in the burning plasma era, where medium- and high-Z impurities are ever present. The Atomic Data and Analysis Structure (ADAS) database is a powerful interpretive tool that is extensively used to model and predict atomic spectra, level populations, and ionization balance for fusion plasmas. These predictions are in good agreement with experimental measurements. However, continuum radiation in the X-ray range, while also modeled in ADAS, has not been rigorously verified or tested against experimental data. We therefore performed a systematic comparison of ADAS to a simplified model called PFM. PFM only calculates continuum radiation but shows good agreement with experimental data when only continuum radiation is present. ADAS and the simplified model agree to within 1% to 2% indicating that ADAS is calculating continuum radiation correctly. We have also begun a validation of SXR brightness calculations from ADAS. The SXR brightness measurements modeled by ADAS agree well with experimental measurements from an extreme where the signal is dominated by line radiation continuously through another extreme where the signal is dominated by continuum emission. While this validation work is preliminary, it strongly suggests that ADAS accurately models the physics that lead to SXR radiation.