ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
B. A. Grierson, X. Yuan, M. Gorelenkova, S. Kaye, N. C. Logan, O. Meneghini, S. R. Haskey, J. Buchanan, M. Fitzgerald, S. P. Smith, L. Cui, R. V. Budny, F. M. Poli
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 101-115
Technical Paper | doi.org/10.1080/15361055.2017.1398585
Articles are hosted by Taylor and Francis Online.
TRANSP simulations are being used in the OMFIT workflow manager to enable a machine-independent means of experimental analysis, postdictive validation, and predictive time-dependent simulations on the DIII-D, NSTX, JET, and C-MOD tokamaks. The procedures for preparing input data from plasma profile diagnostics and equilibrium reconstruction, as well as processing of the time-dependent heating and current drive sources and assumptions about the neutral recycling, vary across machines, but are streamlined by using a common workflow manager. Settings for TRANSP simulation fidelity are incorporated into the OMFIT framework, contrasting between-shot analysis, power balance, and fast-particle simulations. A previously established series of data consistency metrics are computed such as comparison of experimental versus calculated neutron rate, equilibrium stored energy versus total stored energy from profile and fast-ion pressure, and experimental versus computed surface loop voltage. Discrepancies between data consistency metrics can indicate errors in input quantities such as electron density profile or , or indicate anomalous fast-particle transport. Measures to assess the sensitivity of the verification metrics to input quantities are provided by OMFIT, including scans of the input profiles and standardized postprocessing visualizations. For predictive simulations, TRANSP uses GLF23 or TGLF to predict core plasma profiles, with user-defined boundary conditions in the outer region of the plasma. International Tokamak Physics Activity (ITPA) validation metrics are provided in postprocessing to assess the transport model validity. By using OMFIT to orchestrate the steps for experimental data preparation, selection of operating mode, submission, postprocessing, and visualization, we have streamlined and standardized the usage of TRANSP.