ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
B. A. Grierson, X. Yuan, M. Gorelenkova, S. Kaye, N. C. Logan, O. Meneghini, S. R. Haskey, J. Buchanan, M. Fitzgerald, S. P. Smith, L. Cui, R. V. Budny, F. M. Poli
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 101-115
Technical Paper | doi.org/10.1080/15361055.2017.1398585
Articles are hosted by Taylor and Francis Online.
TRANSP simulations are being used in the OMFIT workflow manager to enable a machine-independent means of experimental analysis, postdictive validation, and predictive time-dependent simulations on the DIII-D, NSTX, JET, and C-MOD tokamaks. The procedures for preparing input data from plasma profile diagnostics and equilibrium reconstruction, as well as processing of the time-dependent heating and current drive sources and assumptions about the neutral recycling, vary across machines, but are streamlined by using a common workflow manager. Settings for TRANSP simulation fidelity are incorporated into the OMFIT framework, contrasting between-shot analysis, power balance, and fast-particle simulations. A previously established series of data consistency metrics are computed such as comparison of experimental versus calculated neutron rate, equilibrium stored energy versus total stored energy from profile and fast-ion pressure, and experimental versus computed surface loop voltage. Discrepancies between data consistency metrics can indicate errors in input quantities such as electron density profile or , or indicate anomalous fast-particle transport. Measures to assess the sensitivity of the verification metrics to input quantities are provided by OMFIT, including scans of the input profiles and standardized postprocessing visualizations. For predictive simulations, TRANSP uses GLF23 or TGLF to predict core plasma profiles, with user-defined boundary conditions in the outer region of the plasma. International Tokamak Physics Activity (ITPA) validation metrics are provided in postprocessing to assess the transport model validity. By using OMFIT to orchestrate the steps for experimental data preparation, selection of operating mode, submission, postprocessing, and visualization, we have streamlined and standardized the usage of TRANSP.