ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
P. Rodriguez-Fernandez, A. E. White, A. J. Creely, M. J. Greenwald, N. T. Howard, F. Sciortino, J. C. Wright
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 65-76
Technical Paper | doi.org/10.1080/15361055.2017.1396166
Articles are hosted by Taylor and Francis Online.
Understanding transport in magnetically confined plasmas is critical for developing predictive models for future devices such as ITER. Thanks to recent progress in simulation and theory, along with enhanced computational power and better diagnostic systems, direct and quantitative comparisons between experimental results and models is possible. However, validating transport models using additional constraints and accounting for experimental uncertainties still remains a formidable task. In this work, a new optimization framework is developed to address the issue of constrained validation of transport models. The Validation via Iterative Training of Active Learning Surrogates (VITALS) framework exploits surrogate-based strategies using Gaussian processes and sequential parameter updates to achieve the combination of plasma parameters that matches experimental transport measurements within diagnostic error bars. VITALS is successfully implemented to study L-mode plasmas in the Alcator C-Mod tokamak, and for the first time, additional measurable quantities, such as incremental diffusivity and fluctuation levels, are used during the validation process of the quasi-linear transport models TGLF-SAT1 and TGLF-SAT0. First results indicate that these machine-learning algorithms are very suitable and adaptable as a self-consistent, fast, and comprehensive validation methodology for plasma transport codes.