ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Keisuke Fujii, Ichihiro Yamada, Masahiro Hasuo
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 57-64
Technical Paper | doi.org/10.1080/15361055.2017.1396179
Articles are hosted by Taylor and Francis Online.
Manual uncertainty propagation from possible noise sources has often been adopted for data analysis in many fields of science, including the analysis of Thomson scattering measurement data in fusion plasma science. However, it is not possible to perfectly model all the noise sources and their distributions. In this work, we propose a more data-driven approach for the noise modeling of multichannel measurement systems. We directly modeled the noise distribution by tractable density distributions parameterized with neural networks and trained their weights from a vast amount of measurement data. We demonstrated an application of this method in Thomson scattering measurement data for the Large Helical Device project. This method enabled us to make a realistic inference even without sufficient prior knowledge about the noise.