ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Keisuke Fujii, Ichihiro Yamada, Masahiro Hasuo
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 57-64
Technical Paper | doi.org/10.1080/15361055.2017.1396179
Articles are hosted by Taylor and Francis Online.
Manual uncertainty propagation from possible noise sources has often been adopted for data analysis in many fields of science, including the analysis of Thomson scattering measurement data in fusion plasma science. However, it is not possible to perfectly model all the noise sources and their distributions. In this work, we propose a more data-driven approach for the noise modeling of multichannel measurement systems. We directly modeled the noise distribution by tractable density distributions parameterized with neural networks and trained their weights from a vast amount of measurement data. We demonstrated an application of this method in Thomson scattering measurement data for the Large Helical Device project. This method enabled us to make a realistic inference even without sufficient prior knowledge about the noise.