ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Keisuke Fujii, Ichihiro Yamada, Masahiro Hasuo
Fusion Science and Technology | Volume 74 | Number 1 | July-August 2018 | Pages 57-64
Technical Paper | doi.org/10.1080/15361055.2017.1396179
Articles are hosted by Taylor and Francis Online.
Manual uncertainty propagation from possible noise sources has often been adopted for data analysis in many fields of science, including the analysis of Thomson scattering measurement data in fusion plasma science. However, it is not possible to perfectly model all the noise sources and their distributions. In this work, we propose a more data-driven approach for the noise modeling of multichannel measurement systems. We directly modeled the noise distribution by tractable density distributions parameterized with neural networks and trained their weights from a vast amount of measurement data. We demonstrated an application of this method in Thomson scattering measurement data for the Large Helical Device project. This method enabled us to make a realistic inference even without sufficient prior knowledge about the noise.