ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jan Wallenius
Fusion Science and Technology | Volume 33 | Number 4 | July 1998 | Pages 456-461
Technical Paper | doi.org/10.13182/FST33-456
Articles are hosted by Taylor and Francis Online.
Transmutation of the radiotoxic isotopes 137Cs and 129I using a muon-catalyzed fusion (CF) neutron source is considered. Extensive Monte Carlo simulations show that each fusion neutron may transmute up to 1.7 radiotoxic nuclei, depending on geometry and choice of material. Further, it is found that chemically confining cesium atoms in the compound Cs2O leads to higher transmutation efficiency for a given volume as compared with pure cesium. Assuming that a minimal requirement for applying transmutation to 137Cs is that the inventory half-life with respect to undergoing transmutation is less than twice the natural half-life T1/2 = 30 yr, the highest transmutation rate in a system consisting of a CF source with a maximum achievable intensity of 5 × 1018 n/s is ~5 kg/yr, at an inventory of 300 kg. For larger inventories, the half-life becomes longer. Hence, it seems difficult to achieve a positive energy balance in the process, in contradiction with results of a previous study.