ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Robin L. Hibbard, Matthew J. Bono, Peter A. Amendt, Don W. Bennett, Carlos Castro
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 117-123
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A437
Articles are hosted by Taylor and Francis Online.
Double shell targets have been built by Lawrence Livermore National Laboratory (LLNL) for inertial confinement fusion (ICF) experiments on the Omega laser at the University of Rochester and as a prelude to similar experiments on NIF. Of particular interest to ICF studies are high-precision double shell implosion targets for demonstrating thermonuclear ignition without the need for cryogenic preparation. Because the ignition tolerance to interface instabilities is rather low, the manufacturing requirements for smooth surface finishes and shell concentricity are particularly strict. This paper describes a deterministic approach to manufacturing and controlling error sources in each component. Included is the design philosophy of why certain manufacturing techniques were chosen to best reduce the errors within the target. The manufacturing plan developed for this effort created a deterministic process that, once proven, is repeatable. By taking this rigorous approach to controlling all error sources during the manufacture of each component and during assembly, we have achieved the overall 5 m dimensional requirement with sub-micron surface flaws. Strengths and weaknesses of the manufacturing process will be discussed.