ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Robin L. Hibbard, Matthew J. Bono, Peter A. Amendt, Don W. Bennett, Carlos Castro
Fusion Science and Technology | Volume 45 | Number 2 | March 2004 | Pages 117-123
Technical Paper | Target Fabrication | doi.org/10.13182/FST04-A437
Articles are hosted by Taylor and Francis Online.
Double shell targets have been built by Lawrence Livermore National Laboratory (LLNL) for inertial confinement fusion (ICF) experiments on the Omega laser at the University of Rochester and as a prelude to similar experiments on NIF. Of particular interest to ICF studies are high-precision double shell implosion targets for demonstrating thermonuclear ignition without the need for cryogenic preparation. Because the ignition tolerance to interface instabilities is rather low, the manufacturing requirements for smooth surface finishes and shell concentricity are particularly strict. This paper describes a deterministic approach to manufacturing and controlling error sources in each component. Included is the design philosophy of why certain manufacturing techniques were chosen to best reduce the errors within the target. The manufacturing plan developed for this effort created a deterministic process that, once proven, is repeatable. By taking this rigorous approach to controlling all error sources during the manufacture of each component and during assembly, we have achieved the overall 5 m dimensional requirement with sub-micron surface flaws. Strengths and weaknesses of the manufacturing process will be discussed.