ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
Jyoti Pandey, Bhawna Pandey, H. M. Agrawal, P. V. Subhash, S. Vala, Akhil Sai Aiyyala, Rajnikant Makwana, S. V. Suryanarayana
Fusion Science and Technology | Volume 73 | Number 4 | May 2018 | Pages 545-551
Technical Note | doi.org/10.1080/15361055.2017.1397485
Articles are hosted by Taylor and Francis Online.
For fusion application, there is a high demand for nuclear data for long-lived radionuclides produced in a neutron environment. Cobolt-60 (t1/2 = 5.3 years) is one of the radionuclides produced in a large amount inside the fusion reactor via different pathways. In this context, the excitation function of 60Co(n, p) and 60Co(n, α) reaction from threshold to 20 MeV has been calculated using TALYS-1.6 in the framework of the Hauser Feshbach statistical model along with preequilibrium effects. Outgoing (proton and alpha) particle energy spectra (dσ/dEp, dσ/dEα) and double-differential cross section (d2σ/dE dΩ) has also been estimated at 14 MeV incident neutron energy. Optimized input parameters used during the model calculation were determined by fitting the (n, p) and (n, α) cross sections to the experimental data for the adjacent stable nuclide 59Co. The activation analysis has also been carried out for 1 kg of stainless steel (SS316) using FISPACT-2007.