ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Uncertainty contributes to lowest uranium spot prices in 18 months
A combination of plentiful supply and uncertain demand resulted in spot pricing for uranium closing out March below $64 per pound, with dips down to about $63.50 during mid-March—the lowest futures prices in 18 months, according to tracking by analysis firm Trading Economics. Spot prices have also fallen steadily since the beginning of 2024. Meanwhile, long-term prices have held steady at about $80 per pound at the end of March, according to Canadian front-end uranium mining, milling, and conversion company Cameco.
C. Wang, B. Lu, J. Liang, H. Zeng, X. Y. Bai, Y. L. Chen, M. Huang
Fusion Science and Technology | Volume 73 | Number 4 | May 2018 | Pages 539-544
Technical Paper | doi.org/10.1080/15361055.2017.1396149
Articles are hosted by Taylor and Francis Online.
A pillbox-type radio-frequency window for lower-hybrid current drive power transmission of 3.7 GHz for 200 kW/2 s is designed. The relative permittivity and the loss tangent of several domestic materials—alumina, boron nitride, and sapphire—are exactly compared by the rectangular cavity perturbation method, and finally, the sapphire is chosen as the window medium. The reflection coefficient of the optimized window can reach 55−dB at 3.7 GHz simulated by high-frequency simulation software, and the peak temperature rise can be limited at 20°C with maximum thermal stress of 1.7 MPa by thermal and mechanical analysis. In the high-power test, 221 kW/3 s energy passes the welded window.