ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Yongjian Xu, Li Zhang, Ling Yu, Yahong Xie, Caichao Jiang, Lizhen Liang, Jianglong Wei, Yuanlai Xie, Chundong Hu
Fusion Science and Technology | Volume 73 | Number 4 | May 2018 | Pages 533-538
Technical Paper | doi.org/10.1080/15361055.2017.1392820
Articles are hosted by Taylor and Francis Online.
An important feature of the China Fusion Engineering Test Reactor (CFETR) project is the additional heating obtained from the injection of neutral beams based on accelerated negative ions. For the neutral beams based on negative ions, the most important measurements are beam uniformity, beamlet divergence, and stripping losses. According to the CFETR requirement, the maximum allowed beam divergence angle and beam nonuniformity are 6 mrads and ±10%, respectively. As one-dimensional (1-D) carbon tiles have large ratio between perpendicular conductivity and parallel conductivity and high stability, they can be used for beam uniformity and beamlet divergence measurement. This paper investigates the influence on the response of 1-D carbon tile having the thermal characteristics and features of some dedicated diagnostics. Simulations show that it will be possible to verify experimentally whether the beam meets the requirement about the maximum allowed value. This work lays a foundation for design and application of high-precision beam diagnostic targets.