ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
S. K. Combs, L. R. Baylor
Fusion Science and Technology | Volume 73 | Number 4 | May 2018 | Pages 493-518
Technical Paper | doi.org/10.1080/15361055.2017.1421367
Articles are hosted by Taylor and Francis Online.
High-speed injection of solid fuel was first proposed in 1954 as a possible solution to the problem of transporting fresh fuel across the confining magnetic fields into the plasma of a fusion reactor. While it took a few decades, the use of cryogenic pellets (typically H2 and D2) on fusion experiments became common place; most tokamaks and stellarators are now equipped with a pellet injector(s). These devices operate at low temperatures (~10 to 20 K) and most often use a simple light gas gun to accelerate macroscopic-size pellets (~0.4- to 6-mm diameter) to speeds of ~100 to 1000 m/s. Before the advantages of pellet injection from the magnetic high-field side (HFS) of a tokamak were recognized in 1997, development focused on increasing the pellet speed to achieve deeper plasma penetration and higher fueling efficiency. The HFS injection technique typically dictates slower pellets (~100 to 300 m/s) to survive transport through the curved guide tubes that route the pellets to the plasma from the inside wall of the device. Two other key operating parameters for plasma fueling are the pellet-injection repetition rate and time duration—a single pellet is adequate for some experiments and a steady-state injection rate of up to ~50 Hz is appropriate for others. In addition to plasma fueling, cryogenic pellets have often been used for particle transport and impurity studies in fusion experiments (most often with neon pellets). During the past two decades, a few new applications for cryogenic pellets have been developed and used successfully in plasma experiments: (1) one for edge-localized mode mitigation, (2) one for plasma disruption mitigation (requires large pellets that are shattered before injection into the plasma), and (3) another in which pure argon pellets are used to trigger runaway electrons in the plasma for scientific studies. In this paper, a brief history and the key developments in this technology during the past 25 years are presented and discussed.