ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
E. M. Giraldez, M. Vu, M. L. Hoppe, Jr., E. Losbanos, N. Ravelo, A. Greenwood, M. Schoff, M. P. Mauldin, P. Fitzsimmons, M. P. Farrell, W. Theobald
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 446-452
Technical Paper | doi.org/10.1080/15361055.2017.1389604
Articles are hosted by Taylor and Francis Online.
The challenge of fabricating a shock convergence target is embedding the metal particle at the center of a plastic bead with ≤10-µm concentricity between the metal particle and plastic bead. Two types of the metal particle in plastic bead target were fabricated for the Ultra-Strong-Spherical Shock campaign: (1) a metal particle 50 µm in diameter embedded in the center of a 430-µm-diameter plastic bead and (2) the same metal particle and a 430-µm-diameter plastic bead with an embedded conical shield with the metal particle located at the tip of the conical shield. This paper describes the fabrication of these two target types; it includes the selection of the plastic bead material, how the metal particle was embedded in the plastic material, how the metal particle was attached to the end of the cone, how the plastic material was machined into a bead 430 µm in diameter, and how X-ray images were used to establish the particle position in the plastic material and how it was used for final metrology to determine the concentricity of the metal particle with respect to the plastic bead and the metal particle position with respect to the tip of the conical shield.