ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
R. R. Paguio, G. E. Smith, J. L. Taylor, K. Tomlinson, R. R. Holt, W. D. Tatum, M. P. Farrell, J. Betcher, A. Harvey-Thompson, M. Geissel, J. Kellogg, K. Peterson
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 414-422
Technical Paper | doi.org/10.1080/15361055.2017.1387455
Articles are hosted by Taylor and Francis Online.
Z-beamlet experiments conducted at the PECOS test facility at Sandia National Laboratories (SNL) investigated the nonlinear processes in laser plasma interaction (or laser-plasma instabilities) that complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation, and beam-spray that can occur in large-scale laser-heated gas cell targets. These targets and experiments were designed to provide better insight into the physics of the laser preheat stage of the Magnetized Liner Inertial Fusion scheme being tested on the SNL Z-machine. The experiments aim to understand the trade-offs between laser spot size, laser pulse shape, laser entrance hole window thickness, and fuel density for laser preheat. Gas cell target design evolution and fabrication adaptations to accommodate the evolving experiment and scientific requirements are described in this paper.