ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
T. Bernat, C. Castro, J. Hund, A. Pastrnak, N. Petta, J. Sin, O. Stein
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 392-399
Technical Paper | doi.org/10.1080/15361055.2017.1406250
Articles are hosted by Taylor and Francis Online.
Thin polyimide (PI) windows are used to contain gases in a variety of targets including National Ignition Facility ignition targets. Magnetized liner inertial fusion targets shot on the Sandia National Laboratory Z-facility and on the University of Rochester OMEGA laser facility typically contain deuterium gas in the pressure range from a few to as many as 15 atm, with the window diameters ranging from a few tenths of a millimeter at OMEGA to several millimeters at the Z-facility. These pressures are generally higher, with larger plastic deformations, than previously investigated. We have fabricated and assembled PI windows and measured their deflections and burst pressures for these pressure and diameter ranges at room temperature. The results are dependent on PI formulation and the details of the window assembly geometry. We analyze the scaling behavior of these higher-pressure windows similarly to but with an extension of the analysis of Bhandarkar et al. [Fusion Sci. Technol., Vol. 70, p. 332] and show that predictions of pressure-induced deflection using this analysis applies to a more complex window geometry than previously reported.