ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
T. Bernat, C. Castro, J. Hund, A. Pastrnak, N. Petta, J. Sin, O. Stein
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 392-399
Technical Paper | doi.org/10.1080/15361055.2017.1406250
Articles are hosted by Taylor and Francis Online.
Thin polyimide (PI) windows are used to contain gases in a variety of targets including National Ignition Facility ignition targets. Magnetized liner inertial fusion targets shot on the Sandia National Laboratory Z-facility and on the University of Rochester OMEGA laser facility typically contain deuterium gas in the pressure range from a few to as many as 15 atm, with the window diameters ranging from a few tenths of a millimeter at OMEGA to several millimeters at the Z-facility. These pressures are generally higher, with larger plastic deformations, than previously investigated. We have fabricated and assembled PI windows and measured their deflections and burst pressures for these pressure and diameter ranges at room temperature. The results are dependent on PI formulation and the details of the window assembly geometry. We analyze the scaling behavior of these higher-pressure windows similarly to but with an extension of the analysis of Bhandarkar et al. [Fusion Sci. Technol., Vol. 70, p. 332] and show that predictions of pressure-induced deflection using this analysis applies to a more complex window geometry than previously reported.