ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Suhas Bhandarkar, Jim Fair, Ben Haid, Evan Mapoles, Jeff Atherton, Cliff Thomas, John Moody, Jeremy Kroll, Abbas Nikroo
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 380-391
Technical Paper | doi.org/10.1080/15361055.2017.1406249
Articles are hosted by Taylor and Francis Online.
Early shots on the National Ignition Facility (NIF) were plagued by the buildup of a considerable mass of extraneous ice on the laser entry hole (LEH) windows, a consequence of condensation of the residual air. This resulted in higher than desired temperatures at the LEH, which combined with the variability of the ice thickness made this a problem that needed a robust solution. In this paper, we describe our work in designing a second thin film that shielded the LEH window from the contaminating ice. The detailed cryogenic considerations required to ensure the proper functioning of this new window were simulated and verified experimentally. The data from numerous subsequent shots showed marked improvement in performance, which made this feature an essential component for all cryogenic NIF targets.