ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
J. S. Jaquez, M. O. Havre, A. Nikroo, S. D. Bhandarkar, M. Wang, B. Stahl, K. Kangas, M. P. Farrell
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 370-379
Technical Paper | doi.org/10.1080/15361055.2017.1387461
Articles are hosted by Taylor and Francis Online.
Research at General Atomics and Lawrence Livermore National Laboratory has been focused on evaluating depleted uranium (DU) hohlraum fabrication over the past 10 years to improve the yield, thereby increasing the availability of DU hohlruams required to support the increased shot rate at the National Ignition Facility. The more straightforward gold (Au) hohlraum fabrication involves four basic steps: mandrel fabrication, electroplating, back machining and milling, and leaching. For Au, the overall fabrication yield of this process approaches 98% [H. Streckert and K. Blobaum, Fusion Sci. Technol., Vol. 63, p. 213 (2013)] Depleted uranium lined hohlraum fabrication, however, requires deposition of a multilayer of thin films after the mandrel fabrication step. These thin film deposition processes have historically proven difficult to execute on a complex cylindrical geometry of a hohlraum, resulting in unacceptable stress-driven delamination, with net yields ranging 20% to 35% [H. L. Wilkens et al., Phys. Plasmas, Vol. 14, 056310 (2007)]. Recent hohlraum design and fabrication process changes, as well as material selections implemented between 2014 and 2016, have improved the fabrication yield to over 60%. These changes are discussed here as well as plans for future improvements.