ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
H. Xu, H. Huang, J. Walker, C. Kong, N. G. Rice, M. P. Mauldin, J. D. Vocke, J. H. Bae, W. Sweet, F. H. Elsner, M. P. Farrell, Y. M. Wang, C. Alford, T. Cardenas, E. Loomis
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 354-362
Technical Paper | doi.org/10.1080/15361055.2017.1387459
Articles are hosted by Taylor and Francis Online.
Double-shell inertial confinement fusion targets represent a unique platform for achieving ignition. They consist of a low-Z outer ablator, a high-Z inner pusher layer, and a low-density foam layer sandwiched in between. There is the possibility that double-shell targets may achieve ignition at lower ion temperatures due to the containment of radiation and conduction losses as well as requiring smaller convergence ratios. We have explored using magnetron sputtering to make the inner high-Z pusher layers and have demonstrated a W-Cr bilayer inner-shell design. An Al-Be mixture was explored as one of the outer ablator materials. This material takes advantage of Al X-ray M-band absorption to reduce preheating and still retain Be high-ablation speeds. Typical commercial Al-Be materials suffer from phase separation. However, by using magnetron sputtering we have been able to demonstrate homogeneous Al-Be ablator coatings. The sputtered material forms with nanosized grains and has demonstrated excellent machinability. As a second type of shell explored, pushered single shells can exploit large density gradients to stabilize Rayleigh-Taylor instabilities during compression. Sharp gradients will have higher ignition yields and larger grading lengths will be more stable. We were able to demonstrate pushered single shells made from W-Be gradient layers with various grading slopes and provide simulated results showing that the grading profiles can be influenced by the coating rates of two components.