ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
S. O. Kucheyev, J. M. Lenhardt
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 293-297
Technical Paper | doi.org/10.1080/15361055.2017.1392205
Articles are hosted by Taylor and Francis Online.
Liquid hydrogen confined in pores of nanofoams crystallizes at lower temperatures than in the unconfined, bulk state. Here, we summarize results of our recent systematic relaxation calorimetry studies of the liquid–solid phase transition of hydrogen and deuterium in various materials with open-cell pores. These include spinodal-decomposition-derived silica glasses and nanoporous gold, conventional silica aerogels, and carbon foams with ligaments made from nanotubes and graphene sheets, all of which were studied previously. We present new hydrogen thermoporometry data for polymeric norbornene-based aerogels. Results show that hydrogen freezing temperatures inside all the porous materials studied are depressed. The average depression of the freezing point scales linearly with the ratio of the internal surface area to the pore volume. The average freezing point depression is limited to ≲1.6 K for foams with monolith densities ≲50 mg·cm. Details of the freezing behavior, however, depend nontrivially on the choice of the porous material and on the hydrogen-filling fraction, reflecting phenomena that are beyond the Gibbs-Thomson formalism and pointing to the complexity of pore architectures in the low-density materials of interest to thermonuclear fusion energy applications.