ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
S. O. Kucheyev, J. M. Lenhardt
Fusion Science and Technology | Volume 73 | Number 3 | April 2018 | Pages 293-297
Technical Paper | doi.org/10.1080/15361055.2017.1392205
Articles are hosted by Taylor and Francis Online.
Liquid hydrogen confined in pores of nanofoams crystallizes at lower temperatures than in the unconfined, bulk state. Here, we summarize results of our recent systematic relaxation calorimetry studies of the liquid–solid phase transition of hydrogen and deuterium in various materials with open-cell pores. These include spinodal-decomposition-derived silica glasses and nanoporous gold, conventional silica aerogels, and carbon foams with ligaments made from nanotubes and graphene sheets, all of which were studied previously. We present new hydrogen thermoporometry data for polymeric norbornene-based aerogels. Results show that hydrogen freezing temperatures inside all the porous materials studied are depressed. The average depression of the freezing point scales linearly with the ratio of the internal surface area to the pore volume. The average freezing point depression is limited to ≲1.6 K for foams with monolith densities ≲50 mg·cm. Details of the freezing behavior, however, depend nontrivially on the choice of the porous material and on the hydrogen-filling fraction, reflecting phenomena that are beyond the Gibbs-Thomson formalism and pointing to the complexity of pore architectures in the low-density materials of interest to thermonuclear fusion energy applications.