ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. W. Crippen, E. L. Alfonso, N. G. Rice, C. Kong, M. McInnis, S. Felker
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 285-292
Technical Paper | doi.org/10.1080/15361055.2017.1391661
Articles are hosted by Taylor and Francis Online.
Capsule fill tube assemblies (CFTAs) consist of an ablator capsule and fill tube via a laser-drilled funnel hole. This hole tapers from 17-μm diameter at the outer surface of the ablator capsule to less than 5-μm diameter on the inside of the capsule over approximately 200 μm of wall thickness. Demand for better understanding of the fill tube perturbation during the capsule implosion has driven advancements in the fill tube design. Engineering efforts have been made on hydrodynamic growth radiography assemblies (HGRs) using multiple tube-design variations, including alternative angles, depths, sizes, and location with engineered defects to showcase fill tube effects during an implosion. Testing has shown that these CFTAs and HGRs have survived all fabrication and transport to and from General Atomics (GA) to Lawrence Livermore National Laboratory. These assemblies have also passed cryogenic testing at GA. An overview of alternative CFTA designs, fabrication methods, and developments is presented.