ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Stephan A. Letts, Jared F. Hund, Justin Sin, Jonathan Monterrosa, Brian Motta, Rod Cahayag, Nicole Petta
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 265-272
Technical Paper | doi.org/10.1080/15361055.2017.1387457
Articles are hosted by Taylor and Francis Online.
Four different variations of doped, planar targets were fabricated using multilayer glow discharge polymerization for the foil thickness campaign at the Extended Performance Facility at the University of Rochester. The planar film targets consisted of from one to four layers of CH, CHGe, and CHSi. The composition of Ge and Si was controlled by the flow of dopant gas (either tetramethyl germane or tetramethyl silane) and measured with X-ray florescence. After laser cutting the 200 × 900 × 80-µm film targets out of the larger film, the targets were released from the substrate.
Coating nonuniformity when using an inductively coupled discharge device can be a challenge. We improved the uniformity by rotating the substrate. Film thickness was measured with a chromatic confocal sensor system. Thickness measurements were fit to a Gaussian function, which smoothed the thickness data set and allowed accurate interpolation of thickness measurements.
A challenge for freestanding, planar glow discharge polymer films is intrinsic stress in the coating. Prior to coating the final targets, the coating stress for various deposition parameters was measured. A series of runs with CH, CHGe, and CHSi were coated on thin silicon wafers. The wafers were characterized for bending before and after coating with a stylus profilometer to determine the coating stress using the Stony equation. In general, higher chamber operating pressures resulted in lower stress coatings.