ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Argonne research aims to improve nuclear fuel recycling and metal recovery
Servis
Scientists at Argonne National Laboratory are investigating a used nuclear fuel recycling technology that could lead to a scaled-down and more efficient approach to metal recovery, according to a recent news article from the lab. The research, led by Argonne radiochemist Anna Servis with funding from the Department of Energy’s Advanced Research Projects Agency–Energy (ARPA-E), could have an impact beyond the nuclear fuel cycle and improve other high-value metal processing, such as rare earth recovery, according to Argonne.
The research: Servis’s work is being carried out under ARPA-E’s CURIE (Converting UNF Radioisotopes Into Energy) program. The specific project—Radioisotope Capture Intensification Using Rotating Packed Bed Contactors—started in 2023 and is scheduled to end in January 2026.
B. P. Chock, D. R. Harding, T. B. Jones
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 237-247
Technical Paper | doi.org/10.1080/15361055.2017.1378013
Articles are hosted by Taylor and Francis Online.
Surfactant-containing water droplets were produced using a 75-Vrms pondermotive force operating at 10 kHz. Heat from a 30-V direct-current source, applied to a 2 × 0.1-mm region of the fluid, was instrumental in rupturing a low-surface-energy liquid membrane and forming the droplet. The low voltage allows quick and accurate dispensing of droplets without dielectric breakdown. Nanoliter-sized (~7.6-nL) butanol-styrene droplets were formed using 133 Vrms at 900 Hz. Microliter-sized oil droplets (~0.6 to 10.5 μL) were formed using high voltage (460 to 672 Vrms at 100 Hz). Oil-water emulsions were formed and moved horizontally, overcoming frictional and surface tension forces. Large oil droplets were also moved to a wider electrode spacing, where the emulsion can take the spherical shape of a target. This was only achieved by transporting the emulsion down an inclined slope (45 deg) using gravity to augment the electric force. All the steps are in place to form targets from oil-water-oil and water-oil-water emulsions; only the dielectrophoretic centering and polymerization processes, which were demonstrated previously, must be added.