ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
B. P. Chock, D. R. Harding, T. B. Jones
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 237-247
Technical Paper | doi.org/10.1080/15361055.2017.1378013
Articles are hosted by Taylor and Francis Online.
Surfactant-containing water droplets were produced using a 75-Vrms pondermotive force operating at 10 kHz. Heat from a 30-V direct-current source, applied to a 2 × 0.1-mm region of the fluid, was instrumental in rupturing a low-surface-energy liquid membrane and forming the droplet. The low voltage allows quick and accurate dispensing of droplets without dielectric breakdown. Nanoliter-sized (~7.6-nL) butanol-styrene droplets were formed using 133 Vrms at 900 Hz. Microliter-sized oil droplets (~0.6 to 10.5 μL) were formed using high voltage (460 to 672 Vrms at 100 Hz). Oil-water emulsions were formed and moved horizontally, overcoming frictional and surface tension forces. Large oil droplets were also moved to a wider electrode spacing, where the emulsion can take the spherical shape of a target. This was only achieved by transporting the emulsion down an inclined slope (45 deg) using gravity to augment the electric force. All the steps are in place to form targets from oil-water-oil and water-oil-water emulsions; only the dielectrophoretic centering and polymerization processes, which were demonstrated previously, must be added.