ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Tom Braun, Sung Ho Kim, Monika M. Biener, Alex V. Hamza, Juergen Biener
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 229-236
Technical Paper | doi.org/10.1080/15361055.2017.1392203
Articles are hosted by Taylor and Francis Online.
Spherical ablator shells that contain a thin layer of ultralow-density polymer foam have recently attracted attention in the inertial confinement fusion (ICF) community as they can be used to bring dopants for diagnostics and nuclear physics experiments in direct contact with the deuterium-tritium (DT) fuel or to study new ignition regimes by enabling the formation of uniform liquid DT fuel layers. We developed a method to fabricate these foam-lined ablator shells using a prefabricated ablator as a mold to cast the foam liner within the shell. One crucial component of this new approach is the removal of solvent from the ablator shells without collapsing the ultralow-density porous polymer network. Here, we report on a supercritical drying approach with liquid carbon dioxide that provides critical information on how to produce thin layers of low-density polymer foams in ablator shells for ICF experiments. Diffusion experiments were used to study the time required for complete solvent exchange in 2-mm-inner-diameter diamond shells and the data were used to demonstrate the fabrication of uniform porous polymer films inside ablator shells.