ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Ontario eyes new nuclear development
A 1,300-acre site left undeveloped on the shores of Lake Ontario four decades ago could see new life as the home to a large nuclear facility.
Paul Fitzsimmons, Fred Elsner, Reny Paguio, Abbas Nikroo, Cliff Thomas, Kevin Baker, Haibo Huang, Mike Schoff, David Kaczala, Hannah Reynolds, Sean Felker, Mike Farrell, Brian J. Watson
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 210-218
Technical Paper | doi.org/10.1080/15361055.2017.1356109
Articles are hosted by Taylor and Francis Online.
Laser indirect drive is hindered, in part, by two problems: “wall motion” resulting from ablation of the hohlraum inner wall and “preheat” of the fuel capsule. To mitigate wall motion and preheat, a mid-Z–coated high internal phase emulsion, poly(HIPE) foam liner (5.7-mm diameter, 150 μm thick, 2.8 mm long, 33 mg/cm3) was developed and integrated into the hohlraum interior. A zinc oxide coating was applied throughout the poly(HIPE) foam using atomic layer deposition to achieve 149 ± 14 mg/cm3 bulk density. Preliminary data collected from actual shots at the National Ignition Facility suggest the inclusion of the poly(HIPE) liner reduced preheat threefold and stimulated Brillouin scattering (SBS) fivefold relative to an existing reference shot on a gold hohlraum (wavelength shift also contributed to SBS reduction).