ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Brian M. Patterson, John Sain, Richard Seugling, Miguel Santiago-Cordoba, Lynne Goodwin, John Oertel, Joseph Cowan, Christopher E. Hamilton, Nikolaus L. Cordes, Stuart A. Gammon, Theodore F. Baumann
Fusion Science and Technology | Volume 73 | Number 2 | March 2018 | Pages 173-182
Technical Paper | doi.org/10.1080/15361055.2017.1364923
Articles are hosted by Taylor and Francis Online.
The measurement of the density of materials, especially ultralow-density foams, is difficult in that the measurement must be precise and localizable. The density of the material is often governed by its cellular (i.e., porous) structure, and many techniques exist to create that structure. Often, the cellular structure can vary from one location within the material to another, and when at low densities (i.e., densities lower than ~500 mg/cm3), it can vary due to shrinkage during syneresis, collapse under the weight of gravity, or gas/water vapor uptake. Quantifying this variation is important for a variety of applications, especially when used in plasma physics targets. Knowing the density and its variation across the sample is critical for experimental results to be accurately predicted by physics calculations and for modeling the results of the physics targets. The use of quasi-monochromatic radiography provides a means to image the two-dimensional (2-D) distribution of density variation within silica aerogel materials and to quantitatively measure that variation from sample to sample and lot to lot. For this study, two batches of silica aerogels with targeted densities of ~20 mg/cm3 were created, one batch at Lawrence Livermore National Laboratory, and the other batch at Los Alamos National Laboratory. Outlined here is a quasi-monochromatic radiography system using various X-ray sources coupled to a doubly curved crystal optic and X-ray charge-coupled device camera to image and characterize these materials. It was found that measuring the density both gravimetrically and using quasi-monochromatic radiography were statistically identical, although the two batches were found to be slightly higher than their targeted density due to shrinkage. The radiography system also provided 2-D information as to the aerogel quality, i.e., presence of voids, chipped material, or inclusions.